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Burnside groups B(m,n) are relatively free groups that are factor groups
of the absolutely free group F,, of rank m by its subgroup, generated by n-th
degrees of all the elements. They are the largest groups of fixed rank that have
the exponent equal to n. In this work we compute the commuting probability for
free Burnside groups B(m,3) of exponent 3 and rank m > 1.
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Introduction. Let G be a finitely generated group and w an arbitrary word from
absolutely free group F, of rank m. One can define the probability for the relation
w =1 to be satisfied in the group G (see [1,2]). In order to do that consider Cayley
graph for the group G and let Bg(r) be the ball of radius r centered at the identity
element of the Cayley graph. By P.(w = 1 on G) we denote the probability for the
relation w = 1 to be satisfied on the ball Bg(r). Consequently, the probability of the
relation w = 1 in G will be

P(w=1o0nG) = limsupP,(w=1o0nG).
r—»oo
For a finite group G we get:

{(g1,82,---,8m) €G" :w(g1,82,...,8m) = 1}
G|" '
Gustafson [3] studied the case of w(xj,x;) = [x1,x;] for non-abelian finite and
for some special cases of infinite groups. Apparently, the commuting probability is

Pw=1o0nG)=

less than or equal to - and is equal to 3 for the group of quaternions.

In [4] the above mentioned result is proven for any finitely generated group.
Also it is proven, that if the commuting probability is positive, then the group is
virtually Abelian.
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In this work, we are going to compute the commuting probability for the free
Burnside groups B(m,3) of exponent 3 and rank m > 1.

About Burnside Group B(m,3). First, let’s recall that the free Burnside groups
B(m,n) of exponent n and rank m can be defined in the following way:

B(m,n) = (x1,x2,...,%n || W' =1L,V w=w(x1,%2,...,%n)).

It is well-known that the group B(2,3) is a nilpotent group of order 2 and any
element of that group can be uniquely represented by:

xlqugz [xl,xz]k3, 0<k<2.

For the commutator of x; and x,, we use the following definition:

[x1,x2] :xlxle_lxz_l.

Also [B(2,3),B(2,3)] = Z(B(2,3)).
B(m,3) is a nilpotent group of order 3 for m > 3 and any element of that group
can be uniquely represented as follows:

2 ey o) e, 23] Dot )7 (e 2] 23] (o2 X1 ] %]

p:<’;1>7 q:<’;1>7 nglvtjarsé2

So the group has 3m+(2)+(5) elements for any m.

Also [B(m,3),[B(m,3),B(m,3)]] = Z(B(m,3)).

We are going to formulate several lemmas for the group B(m,3) that are used
in the proofs the main result.

Lemma 1.

VucGuw=1 u'=u’
o (V)P =1 == ubviukv =313k | Ryt = 3tk

e Any element v commutes with its conjugate uvu®.

o Vu,veB(m,3),u,v)* = [u = [u?v] = [vu].

o [x1, [xi,:]] = [x2, [x, 0] = 1.

e Any two commutators commute with each other: [[x1,xz], [x3,x4]] = 1.
Proof. See[5]. O

-1

Lemma 2. The element wx;w™" is invariant relative to the number of entries

of the generator x; in the word w.

Proof. Consider the element wx;w™! for w = ux;v:

(uxjv)x;(ux;v) ' = (uxjv)xj(v_lxjflu_l) = uxjvxjv2x§u2
= u(xjvxjv)vx?l/t2 = u(vzx?)vx?u2 =w? (x?vx?)uz

= w? (Vi P )u? = uvx yiu? = (uv)x;(uv) .
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Definition 1. By o,,(u) let’s denote the number of entries of generator
x;j in a word u. Notice that oy, (u) (mod 3) is invariant relative to the relations
{w¥ =1:w € B(m,3)} that define the group.

Later on, we will assume that

Vi, uj,v; € <x1,x2,...,xj_l,xj+1,...,xm> EB(WL— 1,3).

Lemma 3. Any element u can be represented in one of the following forms,
depending on oy, (u):

L. oy (u) =1 (mod 3) <= u=vixjm;

2. 0y, (u) =2 (mod 3) <= u= leﬁvz;

3. 0y, (u) =0 (mod 3) <= u= lejvzx?.

Proof. The first two statements can be found in [6] and for the third one
we have that o;;(u) =0 (mod 3) <= u=vx jvzx§V3. However, let’s notice that
the set H := {lejv2x§V3 :vi,va,v3 € B(m —1,3)} forms a normal subgroup.
Moreover, as the mapping x; — x? can be extended to an automorphism, and the
mapping a — ax? is a bijection, the sets Hy := {vixjv2 : vi,v2 € B(m — 1,3)},
H, = {legvz :vi,v2 € B(m—1,3)} and H; := {lejvzﬁ v, €B(m—1,3)} CH
have the same number of elements. Hence H = Hj3. O

Lemma 4.

o x;=vix;yy < vy =V}, vi € Z(B(m,3)).
o UIXjUp = VIXjVy = V| =1z, V2 = 7%, 7 € Z(B(m,3)).

Proof. If we apply the homomorphism x; — 1 on both sides, we get
l=vivy <= v = v% = x;= lejv% — [xj,v1] =1

By applying the homomorphism x; — x;, one can get V i,[x;,vi] =1 <=
vi € Z(B(m,3)). The second claim follows from the first one. O

Lemma 5. Vu,v € B(m,3)\ B(m,3)",3a € Aut(B(m,3)), s.t. ot(u) = v.

Proof. Actually it is sufficient to prove that Ja € Aut(B(m,3)), s.t.
(X)) =u. Asu @ B(m,3) =3 j,1 <j<m,s.t op(u) #0 (mod3) =

Lou= (y1y2.--y6)% (Yt 1---31)
or

2. u = (y1y2.--yO)x; Ykt 1--31),
where y; # x;, 1 < i < t, are generators. Then, if the automorphisms
o, Bi,vj, 0;j € Aut(B(m,3)) are such that ¢; is defined by the following mapping:
Xj > XjYi, X — Xk, k # j, Bi is defined by the following mapping: x; — yx;,
Xi — X, k # j, y; is defined by the following mapping: x; — x?, Xp > X, k£,
0;; is defined by the following mapping: x; — X, X; — X;, X — X, k # i, j, then

(Omjoao0y_10--0010B10Bro-0f)(xm) = (V1y2.--Yi)Xj Vit 1---Vr)-
For the second case we just apply ¥; at the end. O
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Lemma 6. Let’s consider the word y1...ykx.,-ykﬂ...y,x?y,H...ys, where
vi, 1 <i <'s, are generators different from x;. Then there exist automorphisms
0: and 0, such that

OL (V1 - VUK [k 1o VXV 1Y) = V1o VkE Va2« VVhA 157 Vi1V
02 (V1 VUK Vk 1oV Vi 1Y) = V1o Yk A XL - VXYYt 1Y
Proof. Using the notations of Lemma 5, we get 6; = o, and 6, = 7. O

Main Result. Our goal is to compute the following expression:
[{(u,v) € B(m,3)? : uv = vu}|
|B(m,3)[* '

One can easily verify the equality
{(u,v) € B(m,3)* : uv = vu}| = Z |C(u)],
ueB(m,3)
where C(u) = {v € B(m,3) : uv = vu} is the centralizer of the element u.

The natural approach will be the investigation of the centralizers of the elements.

The Case of B(2,3). When m = 2, the situation is significantly different from
other cases, as the degree of nilpotency of the group is 2. So we should consider this
case separately.

As we stated above B(2,3)" = Z(B(2,3)). Now we just have to explore the
centralizers of the elements that are out of the derived subgroup of the group.
However, applying Lemma 5 and a simple fact that for any group G,
if we consider an arbitrary automorphism @ € Aut(G), then for any g € G,
C(a(g)) = a(C(g)), the investigation of the centralizer of generator x; is enough.

One can easily verify that

u-Clxy) =v-Clx) < uxju® = x>

According to Lemma 2, the expression uxju? is invariant relative to the
number of entries of the generator x; in the word u, hence the left coset u-C(x1) is also
invariant. Thus there are three left cosets

B(2,3) = C(x;)Uxs-C(x;) LUx3 - C(x1)
B(2,3)] 3
3 3

Eventually, the elements not belonging to the derived subgroup of the group

have centralizers with 9 elements and the elements of the derived subgroup have

centralizers with 27 elements. Therefore,
(27-3)-9+43-27 11
P B(2,3)) = = —.
([xl?xz] on ( ’ )) 272 27
The Case of B(m,3), m > 3. Let’s investigate the centralizer of x,,. For that,
consider the elements of the form v;x,,v2, vi,v, € B(m — 1,3) that commute with x,,,.

= [B(2,3): C(x1)] =3 = |C(x))| = 9.

Xy VX2 =1 <=
Xy = (vpc,,,vg)xm(lemvz)2 = (vlvz)xm(vlvz)z —

ViV € Z(B(m,S)).
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Denote
Zm—1:=B(m—1,3)NZ(B(m,3))

_ JZ(B(m—1,3)), m >3,
{1}, m=3.

Itis clear viv, € Z,,,_1.

Now we choose values of the product v;v, and for vy, then the value of v,
will automatically be selected. However, let’s notice that the words v x,,v, and
(v12)xm(v22?) are equal, where z € Z,,_;. Moreover, all the words from the coset
{vi+Zn—1:v) € B(m—1)} produce the same element v,x,,v, when are chosen for
the role of v;. This result, combined with Lemma 4, provides that in order to choose
a value of v; one has |B(m —1,3)/Z,_;| possible options. Eventually, in order
to choose the element v x, v, one has |B(m—1,3)/Zu_1| - |Zmn-1] = |B(m — 1,3)]
options. In a similar way it can be proven that there are exactly |B(m — 1,3)| elements
of the forms vix2,v, and v1x,,v2x2, commuting with x,,. So |C(x,,)| = 3-|B(m—1,3)
hence, by Lemma 5,

YV u e B(m,3)\B(m,3),|C(u)] =3 |B(m—1,3)| = 3m+(")+("s),

When we consider the centralizers of the elements of the group, the centre
components can be ignored, more precisely,

C(u) =C(uz), Vu € G,¥z € Z(G).

Later on, we will examine the problem in the factor-group B(m,3)/Z(B(m,3)).
One can easily check that the elements of the derived subgroup will have the following
product form:

s

i) 3, y4] oo ey yert ],

where y;, 1 <i <t+ 1, are any generators. And notice that their order doesn’t matter
according to Lemma 1.
In this settings, the following definiton seems reasonable:

Definition 2. The product of the commutators [y1,y2]-[y3,V4] .. [Var—1, Y]
is called independent, if y; # y;, 1 <i, j <2t

Theorem 1. In the group (B(m,3)/Z(B(m,3)))’ for any element there is an
automorphism that brings it to an independent form.

Proof. We will prove this theorem by an induction on m. The base of the
induction is obvious, as the only non-trivial elements of the derived subgroup are
[x1,x2] and [x,x1], which already have independent form. Assume the proposition
is true for all £k < m. We will prove it for m. Let’s consider an arbitrary
element u € B(m,3)". If u € B(m — 1,3), then the proposition is true by induction.
Otherwise, the generator x,, has an entry in the word u and by Lemma 3, u = lemvzxi,
where vi,v; € B(m—1,3). We will consider two cases:

Case 1: v & B(m—1,3)/, then, by Lemma 5, there is an automorphism that
brings the v, to x2,_, and that automorphism fixes x,,. Notice that v; & B(m — 1,3)’
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because vix,vox2, € B(m,3) <= viv; € B(m —1,3). And as the image of
vy 1S x,zn_l, then the image of v; will have the form wpx,_iwy, where
2

wi,wy € B(m—2,3). As aresult, vix,,v2x2, goes to the element WXy W2 X Xy Xy

By Lemma 6, there are automorphisms that bring the element wX,,—1wax,x2, X2,
first to the element wlxm_lxmwzx,i_lxi, then to wlxm_lxmxi_lexfn, then
to the element wiwaXy—1XmX2, (X2 = WIW2[Xim—1,Xm)-

Case 2: v, € B(m—1,3)' =
lemvzx,zn = (vzv%)xmvzx,zn =v1v2[Xm, V2]
and since v, € B(m—1,3) = [x,v2] € Z(B(m,3)) =
ViXnVax2, = vivy (in the group B(m,3)/Z(B(m,3))).
O

Now let’s investigate the centralizers of the elements of the derived subgroup.
Using Theorem 1, we can say that it is sufficient to compute the number of the elements
of the centralizers of the following elements: [x;,xz], [x1,x2] - [x3,x4], [x1,%2] - [x3,X4] -
[X5 ,x6] oo

By Lemma 1, Vu € B(m,3)’,B(m,3)" C C(u).

Let’s explore C([x1,x2]). In order to do that, consider the expression [u, [x1,x2]].
If 3j > 2, s.t. 6;(u) #Z 0 (mod 3), then, by Lemma 5, there exists automorphism,
that brings the element u to x;, and the element [u, [x1,x2]] to [x;, [x;,x2]] # 1, so
u doesn’t commute with [x1,x;]. All the other elements have the following form:
x]f'xlfc, where 0 < kj,ky <2, ¢ € B(m,3)’. By Lemma 1, all the other elements
commute with [x;,x;]. We get the following:

C([x1,x2]) = {u € B(m,3) : 0,;(u) =0(mod 3),Vj > 2}.

In order to select k; and k;, we have 3 options for each one and |B(m,3)’|

options for c. Eventually,
€l xa)| = 3-3- |B(m,3) | = 37 ()3,

Later on, let’s use the following notations.

By Bij, B; i,7j,0;; denote the Nielsen’s automorphisms that are given by the
fOllOWing mappings: Bij(xi) = XiXj, 3ij(x,') = X;Xi, ’}/j(x]') = x?, 5,~j(x,~) = Xj,
0ij(xj) = x;, all other generators are fixed.

Now let’s investigate C([x1,x2] - [x3,x4]). Consider the expression [u, [x1,x2] -
[x3,x4]]. As in the previous case, if 3j > 4, s.t. 6y;(u) # 0 (mod 3), then there exists
an automorphism that brings the element [u, [x1,x2] - [x3,x4]] to [x;, [x1,x2] - [x3,x4]],
then it is mapped to [x;, [x;,x2]] # 1 with the homomorphism (x4 — 1). Hence u
doesn’t commute with [x;,x;]. The other elements have the following form:
u= xf'xé%?xﬁ“c, where 0 < ky,kp,k3,ks <2, ¢ € B(m,3)'. As the commutators
commute with each other

[u, [x1,%2] - [x3,x4]] = 1 <= [x]f‘xgleg}xﬁ“, [x1,x2] - [x3,x4]] = 1.

Let’s consider all possible cases and prove that [xllc‘xl;zx?xi“, [x1,x2] - [x3,x4]] # L.
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Case 1: [xjxp,[x1,x2] - [x3,x4]]. Let’s apply the homomorphism x; — 1.
As aresult we have

[XIXZ, [xl,)CQ] . [)C3,X4H — [xl, [X3,X4H 75 1.

This approach also works in the case [x1, [x1,x2] - [x3,x4]].
Case 2:  [xyx3, [x1,x2] - [x3,x4]].
Let’s apply the homomorphism x4 — 1. We will get

(X123, [x1,x2) - [x3,x4]] = [x123, [x1, %2

Then, let’s apply the automorphism 3321, so that we get [xjx3, [x1,x2]] —
[X3, [xl,xzﬂ 7& 1. The cases [)C1X2X3, [X],Xz] . [X3,JC4H and [X1XQX3X4, [xl,xz] . [X3,X4]] are
solved similarly. It is clear that the cases when any of the ki, k), k3, ks are
equal to 2, do not cause any problem, as we still can apply Nielsen’s automorphisms
to make the degrees equal to 1. As a result, the degrees of commutator parts can differ,
which doesn’t change anything.

Apparently, the elements out of the derived subgroup doesn’t commute with
[x1,%x2] - [x3,x4]. Eventually C([x1,x2] - [x3,x4]) = B(m,3)’.

In case of independent products with more than two commutators we get the
same result, which can be verified in the following way. When we consider the
expression [u, [x1,x2] - [x3,X4] - ... - [x2x—1,X2¢]], let’s fix the generators x;, ,xi,,Xi,, Xi,,
1 <iy,ip,i3,i4 < m, so that the degree of at least one of them is not zero in u. Then, all
the other generators are transfered to 1 by homomorphisms. As a result we return to the
previous case. Eventually, we get C([x1,x2] - [x3,X4] - ... - [Xok—1,%2]) = B(m,3)’, k > 2.
Then it follows that

C(fer, 0] s, ] - 1, x0a])| = [BOm, 3)'| = 30) ),
Now we just have to compute the number of different images of the element

[x1,x2] in the group B(m,3)/Z(B(m,3)) under all possible automorphisms.
But first, let’s state one more preleminary Lemma:

Lemma 7. If o € Aut(B(m— 1,3)), then 3¢ € Aut(B(m,3)), s.t.
{a(xl-) = a(x), i #m,
(X)) = X
Proof. As the group is relatively free, & is indeed a homomorphism, and
al=al O
Proposition. If the number of different images of [x1,x] in the group
B(m,3)/Z(B(m,3)) is hy, then hy, satisfies the following recurrent relation
B =9 hyp1 +3"" — 1.
Proof. Itis clear that if o € Aut(B(m,3)) and ot (x) :x]f‘ wxkmer o(xn) =

Xxmey, ep,¢0 € B(m,3), then a([x1,x2]) = [ot(x1), 00(x2)] = [0 .odbmey X1 Xy =

DA xkn X0 xim]. Tt is easy to notice, that if

doy,_1 € Aut(B(m— 1,3)), S.t. O!m,l([xl,xz]) = [am,l(xl),otm,l(xz)],



44 PROBABILISTIC IDENTITIES IN BURNSIDE GROUPS OF EXPONENT 3.

then 3Jda,, € Aut(B(m,3)), S.t. Otm([xl,XQ]) = [Ocm,l(xl)xf; , Oy — 1()(2) r”’]
Vs, 0 <kpyy 1 < 2.
One can verify that
O = ﬁ1m o ﬁzm © Oy—1-
In order to choose values for &, and r,, we have 3 options for each one,
therefore
hpw >33 hyp1=9 hp_q.
Let us find the other images. One can prove that
Ja € Aut(B(m,3)), s.t. a([x;,x2]) = [xlfl...x]:,;’fi yXm), Vki, 0 < k; <2,3s, kg # 0.
It is easy to verify that

m—1
52m061so< H Skl'i>yks:17

. i
Oxm © 8150 ﬁsli oY%, ks =2.
i=1,its

Each k; has 3 options, all together 3"~ ! options, but we should exclude the case
when all k; are zeros. So we have 3"~ ! — 1 cases, and hence,

hm 2 9'hm—l +3m—1 -

Let us prove that there are no other images. Here we will use simple fact
that Vu, v,w, [uv,w] = [u, [v,w]] - [v,w] - [u,w] and in factor-group by centre we will get
[uv,w] = [v,w] - [u, w]. Assume

o € Aut(B(m,3)), s.t. ot([x1,x2]) = 1k X)) 0 < ki <2
Consider two cases:

En

Case I: [ Xt Xl Xm0 £ 1= 30, stk £0 =

Jogpy—1 € Aut(B(m— 1,3)), s.t. Otm,l(x’lc Ay =x
(A ,]:;" LX) = g l], 0 <t < 2.
As xp, XA A 1= Tj £ st £0 =
Hﬁm_l € Aut(B(m—1,3)), s.t. Bu1(x1) = x1, Bt (] . 7)) =0 =
Bt (ber, 2 i Th]) = [vna] = (B, Ly o e, L) (b)) = ol xg! .

k
Case 2: [x}l..xt X Xl =1=

m—1’
[x]f'...xk”’ X = [xllc' I AR e [x]l‘1 o xim] oo X

m—1°7"1 m—1 m—12"m m m
ki km—1 _r, kp T1 Fin—1 ki km—1 _r, Fm—1 2k
=[x ] e xy T  = X X [xl XX ™
k,l k;ﬂ*l r,l r,/,171 kl ;nfl rll r;nfl
=[x ) - [ X X] = XX X X

Ky +r) L
=[x, X

Therefore hy =9 by +3™ 1 — 1.
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hy =2,as B(2,3) = {1, [x1,x2], [x2,x1]}. One can solve this recurrent relation
and get
@ '—1)(3m—-1)

hy =
8

Eventually, the centralizers of hy, - |Z(B(m,3))| elements have 32+(2)+(3)

elements, and the centralizers of (3('3) —hy—1)-1Z(B(m,3))| elements have 3(3)+(3)
elements.
After all
P([x1,x2] on B(m,3)) =

(= (1BOn,3) = 1BOn,3))) -3+ [B(m— 1,3)|+ hy | Z(B(m,3))| -3+ |Bm,3)'|
+(3) = b= 1) -Z(B(m,3))| - [Bm,3)'| + |Z(B(m.3) |- [B(m,3)]) /|B(m, 3)

3<m;1)+(m;1)(3m . 1) + <3m 1 +3(m71)2(m—2)) 3(,;,)_1

3m+(5)+(%)
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U N dUSNLU8SUL

SEJULUYYLUSPL LA LAREBAFLLENL 3 ERUMNLELS NFLESNN,
ABENLUUBNSUWL WURGLNFT

m (wbqg U n Epuynbtilnp nbtignn Atinbuwynywbd pudpbpp hwinhuwbnd
L0 hwpupbpujub wqup pudptin, npnbip m nwtig mbtignn Jumpupju wmquu F,
hudph pwbnpn fudpbpb Gb pup poinp fGdtbgbbph #2-pn wuphdwbbbpny dtjwd
Lipwhdph: dpubp hwinhuwbmd Gh wdtbwdto hadpbpp, npnbip mokh m nwbq
U » Epuynbtiyp: Wu wpluupubipnid dtilp hwpynmd Gop yphnuuthnjutijhnipyub
huwjuwbwubnipymin 3 Epuynbbinpn b m < 1 nwbq mbtignn Rtnhuwynyub
hwpwptipujub wqup podpbpnd:

A. P. DATPAIAH

BEPOSITHOCTHBIE TOXKIECTBA B T'PVIIIIE BEPHCANJIA
S9KCIIOHEHTHI 3

Ipynubt  Beprcaiina B(m,n) sBISIOTCS OTHOCHTEJBHO CBODOHBIMU
IpYIIIaMH, KOTOPBIE SIBJIAIOTCS (DAKTOP TIpYyIIaMu abCOJIOTHO CBOOOIHOM
rpyIisl F,, paHra m 1o MoArpyIie, MOPOoK/IeHHO! A-MU CTEIIEHSIMEU BCEX JIEMEH-
ToB. OHU ABJAIOTCH HAUOOIBIIUMHU B KJIACCE IPYIII ¢ (DUKCUPOBAHHBIM PDAHIOM
m, OSKCIOHEHTbI n. DB »3roit paboTre HAMHU pacCUUTaHA BEPOSTHOCTH
KOMMYTATHBHOCTHU JIJIsi OTHOCHTEIHHO CBOOOMHBIX rpymi Bepucaiina B(m,3)
3KCIoHeHTH! 3 u panra m < 1.



